Saturday 7 April 2018

Construa o sistema de negociação com python


Jon V.
BigData. Iniciantes. Negociação.
BigData. Iniciantes. Negociação.
Construindo um sistema backtesting em Python: ou como perdi $ 3400 em duas horas.
Construir um sistema de backtest é realmente muito fácil. Fácil de estragar eu quero dizer. Embora existam toneladas de excelentes bibliotecas por aí (e as abordaremos em algum momento), eu sempre gosto de fazer isso por conta própria para ajustá-la.
De todos os sistemas de backtesting que vi, podemos supor que existem duas categorias:
Hoje, falaremos sobre loopers.
Os "loopers" são meus tipos favoritos de backtesters. Eles são triviais para escrever e super divertidos para expandir, mas eles têm alguns fluxos vitais e, infelizmente, a maioria dos backtesters lá fora é "for-loopers" (ps: Eu preciso encontrar um nome melhor para isso!).
Como funcionam os loopers? Usando um loop for (como você pode ter adivinhado). É algo assim:
Muito simples, certo? É assim que funciona um sistema de backtesting, que executa uma estratégia de impulso:
Então qual é o problema?
Muito difícil de escalar (horizontalmente) Precisa de muito trabalho para manter sua estratégia de aplicação () trabalhando no backtesting e na produção Você precisa ter tudo na mesma linguagem de programação.
Vamos mergulhar neles, um por um.
Escalabilidade. Eu estava experimentando algumas semanas atrás com um algoritmo de escalada para otimizar uma das minhas estratégias. Ainda está em execução. Depois de duas semanas. E eu construo sistemas robustos para uma vida. Por que ainda está funcionando? Você pode usar multiprocessamento, Disco, produtor / consumidor (usando o ZeroMQ) ou apenas threads para acelerar isso, mas alguns problemas não são "paralisações embaraçosas" (sim, este é um termo real, e não uma das minhas palavras inventadas). A quantidade de trabalho para escalar um backtester como este (especialmente quando você quer fazer o mesmo aprendizado de máquina em cima dele) é enorme. Você pode fazê-lo, mas é o caminho errado.
Produção e backtesting em sincronia. As vezes que fui mordido por isso. Posso recordar as trocas perdidas onde eu estava "hm, por que eu entrei nesse comércio?" ou o meu antigo favorito "POR QUE A PARADA DE REALIZAÇÃO FOI APLICADA AGORA?".
Hora da história: Eu tive uma idéia para otimizar minha estratégia, para executar um backtester para ver o que aconteceria se eu pudesse colocar uma parada depois que o negócio fosse lucrativo, a fim de sempre garantir lucros. Backtesting funcionou como um charme com um aumento de 13% nos ganhos e a produção perdeu todo comércio. Eu percebi isso depois que meu algo perdeu $ 3400 em um par de horas (uma lição muito cara).
Manter a estratégia apply_strategy em sincronia é muito difícil e torna-se quase impossível quando você deseja fazê-lo de forma distribuída. E você não quer ter duas versões da sua estratégia que são "quase" idênticas. A menos que você tenha US $ 3400 de sobra.
Usando diferentes idiomas, adoro Python. E Erlang. E Clojure. E J. E C. E R. E Ruby (não, na verdade, eu odeio Ruby). Eu quero poder aproveitar a força de outros idiomas no meu sistema. Quero experimentar estratégias em R onde há bibliotecas muito bem testadas e há uma enorme comunidade por trás disso. Eu quero ter Erlang para escalar meu código e C para processar dados. Se você quer ser bem sucedido (não apenas na negociação), você precisa ser capaz de usar todos os recursos disponíveis sem preconceitos. Eu aprendi toneladas de coisas de sair com desenvolvedores de R sobre como você pode delta de títulos de hedge e visualizá-los ou por que razão de Sharpe pode ser uma mentira. Todo idioma tem uma multidão diferente e você quer que muitas pessoas despejam idéias em seu sistema. Se você tentar aplicar a estratégia apply_strategy em idioma diferente, então, boa sorte com (2).
Você está convencido agora? Bem, eu não estou tentando convencê-lo como for-loopers é uma ótima maneira de executar seus testes iniciais. Foi assim que comecei e, para muitas estratégias, não as envio para o pipeline. Um "melhor" caminho (assim você pode dormir à noite) é o gerador de eventos.
Próximamente, compartilhando e discutindo meu backtester mais simples (mas com maior sucesso)!
Se você tiver mais comentários, envie-me um ping no jonromero ou inscreva-se no boletim informativo.
Outro Jurídico Este é um tutorial de engenharia sobre como construir uma plataforma de algotrading para experimentação e DIVERSÃO. Todas as sugestões aqui não são conselhos financeiros. Se você perder algum (ou todo) dinheiro porque seguiu qualquer aviso de negociação ou implantou este sistema em produção, você não pode culpar esse blog aleatório (e / ou eu). Aproveite por sua conta e risco.

Biblioteca de Negociação Algorítmica Python.
O PyAlgoTrade é uma Biblioteca de Negociação Algorítmica Python, com foco em backtesting e suporte para negociação de papéis e negociação ao vivo. Digamos que você tenha uma ideia para uma estratégia de negociação e gostaria de avaliá-la com dados históricos e ver como ela se comporta. O PyAlgoTrade permite que você faça isso com o mínimo de esforço.
Principais características.
Totalmente documentado. Evento dirigido. Suporta ordens Market, Limit, Stop e StopLimit. Suporta o Yahoo! Arquivos Finanças, Google Finance e NinjaTrader CSV. Suporta qualquer tipo de dados de séries temporais no formato CSV, por exemplo, o Quandl. Suporte de negociação Bitcoin através do Bitstamp. Indicadores técnicos e filtros como SMA, WMA, EMA, RSI, Bandas de Bollinger, expoente de Hurst e outros. Métricas de desempenho como a taxa de Sharpe e a análise de rebaixamento. Manipulando eventos do Twitter em tempo real. Criador de perfil de eventos. Integração TA-Lib.
Muito fácil de dimensionar horizontalmente, isto é, usando um ou mais computadores para fazer backtest de uma estratégia.
O PyAlgoTrade é gratuito, de código aberto e está licenciado sob a Licença Apache, Versão 2.0.

Construa o sistema de negociação com python
Se você é um comerciante ou um investidor e gostaria de adquirir um conjunto de habilidades de negociação quantitativas, você está no lugar certo.
O curso de Trading With Python fornecerá as melhores ferramentas e práticas para pesquisa quantitativa de negociação, incluindo funções e scripts escritos por especialistas em negociações quantitativas. O curso dá o máximo impacto para o seu tempo investido e dinheiro. Centra-se na aplicação prática da programação à negociação, em vez da informática teórica. O curso irá pagar por si mesmo rapidamente, economizando tempo no processamento manual de dados. Você passará mais tempo pesquisando sua estratégia e implementando negociações lucrativas.
Visão geral do curso.
Parte 1: princípios Você vai aprender por que a Python é uma ferramenta ideal para negociação quantitativa. Começaremos configurando um ambiente de desenvolvimento e, em seguida, apresentaremos as bibliotecas científicas.
Parte 2: Manipulação dos dados Saiba como obter dados de várias fontes gratuitas, como Yahoo Finance, CBOE e outros sites. Leia e escreva vários formatos de dados, incluindo arquivos CSV e Excel.
Parte 3: Pesquisando estratégias Aprenda a calcular P & L e acompanhar as métricas de desempenho como Sharpe e Drawdown. Desenvolva uma estratégia de negociação e otimize seu desempenho. Múltiplos exemplos de estratégias são discutidos nesta parte.
Parte 4: Indo ao vivo! Esta parte é centralizada em torno da API Interactive Brokers. Você aprenderá como obter dados em estoque em tempo real e colocar ordens ao vivo.
Muito código de exemplo.
O material do curso consiste em "cadernos" que contêm texto junto com um código interativo como este. Você poderá aprender interagindo com o código e modificando-o ao seu gosto. Será um ótimo ponto de partida para escrever suas próprias estratégias.
Embora alguns tópicos sejam explicados detalhadamente para ajudá-lo a entender os conceitos subjacentes, na maioria dos casos você não precisará escrever seu próprio código de baixo nível, devido ao suporte de bibliotecas de código aberto existentes:
A biblioteca TradingWithPython combina uma grande parte da funcionalidade discutida neste curso como uma função pronta para usar e será usada ao longo do curso. Pandas irá fornecer-lhe todo o poder de levantamento pesado necessário no trituração de dados.
Todo o código é fornecido sob a licença BSD, permitindo seu uso em aplicações comerciais.
Classificação do curso.
Um piloto do curso foi realizado na primavera de 2013, é o que os alunos conseguiram dizer:
Matej curso bem projetado e bom treinador. Definitivamente valeu o preço e meu tempo, Lave Jev, obviamente, conhecia suas coisas. A profundidade da cobertura foi perfeita. Se Jev executar algo assim novamente, eu serei o primeiro a me inscrever. John Phillips Seu curso realmente me fez começar a considerar o python para análise de sistemas de estoque.

Globalize sua negociação.
A maioria dos comerciantes se concentra no mercado dos EUA & mdash; o mercado mais competitivo do mundo. No entanto, o mercado de ações dos EUA representa menos de 50% do valor de mercado global e apenas 25% das listagens globais.
Fuja de comércios lotados.
Encontre o mercado certo.
Valide seus backtests.
Negocie o tempo todo.
O QuantRocket é feito sob medida para negociação internacional automatizada com a IB.
Dados facilitados.
Desbloqueie o potencial dos dados do mercado global da IB, menos a dor.
Para as ações dos EUA, você tem muitas opções em fornecedores de dados, mas dados internacionais acessíveis são mais difíceis de encontrar. A IB oferece dados históricos e em tempo real a um custo acessível para trocas ao redor do mundo.
No entanto, trabalhar com dados do IB pode ser desafiador: documentação incompleta, violações de andamento, um modelo de programação orientada a eventos, blecautes de servidor e muito mais. O QuantRocket elimina a dificuldade de baixar e trabalhar com dados do IB, liberando seu potencial.
Possua seus dados.
Dados históricos do seu jeito.
Dados fundamentais globais.
Faça o download de dados históricos de todas as ações da Bolsa de Valores de Toronto, em 4 comandos.
Escolha seu backtester.
Um tamanho não serve para todos.
O backtester certo para você depende do estilo de suas estratégias de negociação. Fim do dia ou intradiário? 15 símbolos ou 1500? O QuantRocket suporta dois backtesters Python de código aberto com diferentes forças. Ou, conecte seu próprio backtester favorito graças à arquitetura de microsserviço modular da QuantRocket.
O Moonshot é o mecanismo de backtesting e negociação de código aberto da QuantRocket.
Backtests rápidos, vetorizados e com várias estratégias usando Python e Pandas Ideal para estratégias transversais envolvendo centenas ou milhares de símbolos Varreduras de parâmetros Negociação ao vivo Open source Desenhado por e para QuantRocket.
Zipline é o popular backtester de código aberto que alimenta o Quantopian.
Backtests orientados a eventos usando Python Support para dados minuciosos ou diários Adequado para estratégias intraday que reagem a dados em tempo real Grande comunidade de usuários Negociação ao vivo usando adaptadores fornecidos pela QuantRocket Mova suas estratégias de Quantopian para QuantRocket.
Conecte seu próprio
Use o serviço de satélite para trazer seu backtester favorito para o sistema solar QuantRocket.
Diga ao QuantRocket quais pacotes instalar Execute seu código através do CLI Beneficie-se dos serviços de infraestrutura e dados do QuantRocket Execute tantos serviços de backtester quanto desejar.

Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Uma das perguntas mais freqüentes que recebo no mailbag do QS é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não há "melhor" linguagem. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreverá os componentes necessários de uma arquitetura de sistema de comércio algorítmico e como as decisões relativas à implementação afetam a escolha da linguagem.
Primeiramente, os principais componentes de um sistema de negociação algorítmica serão considerados, como as ferramentas de pesquisa, o otimizador de portfólio, o gerenciador de risco e o mecanismo de execução. Posteriormente, diferentes estratégias de negociação serão examinadas e como elas afetam o design do sistema. Em particular, a frequência de negociação e o volume de negociação provável serão ambos discutidos.
Uma vez que a estratégia de negociação tenha sido selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o sistema operacional e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, a devida atenção deve ser dada ao desempenho - tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de negociação tentando fazer?
Antes de decidir sobre a "melhor" linguagem com a qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou de construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema de negociação pode ser dividido em duas categorias: Pesquisa e geração de sinais.
A pesquisa está preocupada com a avaliação de um desempenho da estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação sobre dados de mercado anteriores é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade e a simultaneidade da CPU costumam ser os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinais preocupa-se em gerar um conjunto de sinais de negociação de um algoritmo e enviar esses pedidos ao mercado, geralmente por meio de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. Problemas de E / S, como largura de banda de rede e latência, são muitas vezes o fator limitante na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bem diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados que estão sendo negociados, a conectividade com fornecedores de dados externos, a frequência e o volume da estratégia, o trade-off entre a facilidade de desenvolvimento e a otimização de desempenho, bem como qualquer hardware personalizado, incluindo customização co-localizada servidores, GPUs ou FPGAs que possam ser necessários.
As escolhas tecnológicas para uma estratégia de ações norte-americanas de baixa frequência serão muito diferentes daquelas de uma negociação de estratégia de arbitragem estatística de alta frequência no mercado de futuros. Antes da escolha da linguagem, muitos fornecedores de dados devem ser avaliados quanto à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de quaisquer APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor ficar off-line. Também é aconselhável ter acesso rápido a vários fornecedores! Vários instrumentos têm suas próprias peculiaridades de armazenamento, exemplos dos quais incluem vários símbolos de ticker para ações e datas de vencimento para futuros (para não mencionar quaisquer dados OTC específicos). Isso precisa ser levado em conta no design da plataforma.
A frequência da estratégia é provavelmente um dos maiores impulsionadores de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar exigem consideração significativa com relação ao desempenho.
Uma estratégia que excede as segundas barras (isto é, dados de ticks) leva a um design orientado pelo desempenho como o requisito primário. Para estratégias de alta frequência, uma quantidade substancial de dados de mercado precisará ser armazenada e avaliada. Softwares como HDF5 ou kdb + são comumente usados ​​para essas funções.
Para processar os volumes extensos de dados necessários para aplicativos HFT, um backtester e um sistema de execução extensivamente otimizados devem ser usados. C / C ++ (possivelmente com algum montador) é provável que seja o candidato de idioma mais forte. Estratégias de frequência ultra-alta quase certamente exigirão hardware customizado, como FPGAs, co-location de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e scripts automatizados. O primeiro ocorre com frequência dentro de um IDE, como o Visual Studio, o MatLab ou o R Studio. Este último envolve extensos cálculos numéricos sobre numerosos parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente simples para testar o código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetro.
IDEs típicos nesse espaço incluem o Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais simples da pilha inteira do projeto (via banco de dados ORM, LINQ); MatLab, que é projetado para extensa álgebra linear numérica e operações vetorizadas, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE completo; Eclipse IDE para Linux Java e C ++; e IDEs semi-proprietários como o Enthought Canopy for Python, que incluem bibliotecas de análise de dados como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A consideração principal neste estágio é a velocidade de execução. Uma linguagem compilada (como C ++) é geralmente útil se as dimensões do parâmetro de backtesting forem grandes. Lembre-se que é necessário ter cuidado com esses sistemas, se for esse o caso!
Linguagens interpretadas, como Python, geralmente usam bibliotecas de alto desempenho como o NumPy / pandas para a etapa de backtesting, a fim de manter um grau razoável de competitividade com equivalentes compilados. Em última análise, a linguagem escolhida para o backtesting será determinada por necessidades algorítmicas específicas, bem como o leque de bibliotecas disponíveis na linguagem (mais sobre isso abaixo). No entanto, a linguagem usada para os ambientes de backtester e de pesquisa pode ser completamente independente daquelas usadas nos componentes de construção de portfólio, gerenciamento de risco e execução, como será visto.
Construção de Carteira e Gestão de Risco.
Os componentes de gerenciamento de risco e de construção de portfólio são frequentemente negligenciados pelos traders algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não apenas tentam aliviar o número de apostas "arriscadas", mas também minimizam a rotatividade dos negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É fácil criar uma estratégia estável, pois o mecanismo de construção de portfólio e o gerenciador de risco podem ser facilmente modificados para lidar com vários sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de negociação algorítmica.
O trabalho do sistema de construção de portfólio é pegar um conjunto de negócios desejados e produzir o conjunto de negociações reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção de portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração de matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação da álgebra linear numérica disponível. Bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. O Python utiliza o NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca matricial compilada (e bem otimizada!) Para realizar este passo, de modo a não afunilar o sistema de negociação.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de negociação algorítmica. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, inadimplência de terceiros, interrupções de servidor, eventos "black swan" e erros não detectados no código de negociação. para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e correlação entre as classes de ativos e seus efeitos subseqüentes sobre o capital comercial. Muitas vezes, isso reduz a um conjunto de cálculos estatísticos, como os "testes de estresse" de Monte Carlo. Isso é muito semelhante às necessidades computacionais de um mecanismo de precificação de derivativos e, como tal, será vinculado à CPU. Estas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de carteira e gerenciamento de risco e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora como a Interactive Brokers. As principais considerações ao decidir sobre uma linguagem incluem a qualidade da API, a disponibilidade do wrapper de idioma para uma API, a frequência de execução e o escorregamento previsto.
A "qualidade" da API refere-se a quão bem documentada ela é, que tipo de desempenho ela fornece, se precisa de software independente para ser acessado ou se um gateway pode ser estabelecido de forma desmotivada (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa estar em execução em um ambiente GUI para acessar sua API. Certa vez, tive que instalar uma edição Ubuntu Desktop em um servidor de nuvem da Amazon para acessar remotamente o Interactive Brokers, puramente por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, cabe à comunidade desenvolver wrappers específicos de linguagem para C #, Python, R, Excel e MatLab. Observe que, com cada plug-in adicional utilizado (especialmente os wrappers de APIs), há escopo para os bugs se infiltrarem no sistema. Sempre teste plugins desse tipo e garanta que eles sejam ativamente mantidos. Um indicador que vale a pena é ver quantas novas atualizações foram feitas em uma base de código nos últimos meses.
Freqüência de execução é da maior importância no algoritmo de execução. Observe que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. A derrapagem será incorrida através de um sistema de execução com péssimo desempenho e isso terá um impacto dramático na lucratividade.
As linguagens com tipagem estática (veja abaixo) como C ++ / Java são geralmente ótimas para execução, mas há um compromisso em tempo de desenvolvimento, teste e facilidade de manutenção. Linguagens dinamicamente tipificadas, como Python e Perl, são geralmente "rápidas o suficiente". Certifique-se sempre de que os componentes são projetados de maneira modular (veja abaixo) para que possam ser "trocados" conforme o sistema é dimensionado.
Planejamento arquitetônico e processo de desenvolvimento.
Os componentes de um sistema de negociação, seus requisitos de frequência e volume foram discutidos acima, mas a infra-estrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciantes de varejo ou que trabalham em um pequeno fundo provavelmente estarão "usando muitos chapéus". Será necessário estar cobrindo o modelo alfa, os parâmetros de gerenciamento e execução de riscos, e também a implementação final do sistema. Antes de aprofundar em linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema de negociação. No desenvolvimento de software, isso significa essencialmente dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que auxiliem o desempenho, a confiabilidade ou a manutenção, sem modificar nenhum código de dependência externo. Essa é a "melhor prática" para esses sistemas. Para estratégias em freqüências mais baixas, tais práticas são recomendadas. Para negociação de ultra alta frequência, o livro de regras pode ter que ser ignorado em detrimento do ajuste do sistema para um desempenho ainda maior. Um sistema mais fortemente acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ideal é garantir que haja componentes separados para as entradas de dados de mercado históricas e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros estratégicos, construção de portfólio, gerenciamento de risco e sistemas automatizados de execução.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com baixo desempenho, mesmo em níveis significativos de otimização, ele poderá ser substituído com reescritas mínimas para a API de acesso a dados ou acesso a dados. Tanto quanto o backtester e componentes subseqüentes estão em causa, não há diferença.
Outro benefício dos componentes separados é que ele permite que uma variedade de linguagens de programação seja usada no sistema geral. Não há necessidade de se restringir a um único idioma se o método de comunicação dos componentes for independente de idioma. Este será o caso se eles estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting sendo escrito em C ++ para desempenho "processamento de números", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações de desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias de negociação. Para estratégias de maior frequência, é o fator mais importante. "Desempenho" abrange uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto, este artigo apenas arranhará a superfície de cada tópico. A arquitetura e a escolha de idiomas serão agora discutidas em termos de seus efeitos no desempenho.
A sabedoria predominante, como afirma Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Isso é quase sempre o caso - exceto quando se constrói um algoritmo de negociação de alta frequência! Para aqueles que estão interessados ​​em estratégias de baixa frequência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os gargalos começam a aparecer.
As ferramentas de criação de perfil são usadas para determinar onde os gargalos surgem. Os perfis podem ser feitos para todos os fatores listados acima, seja em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da língua será agora discutida no contexto do desempenho.
C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte de seus padrões ou externamente) para estrutura de dados básica e trabalho algorítmico. O C ++ é fornecido com a Biblioteca de Modelos Padrão, enquanto o Python contém o NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.
Uma exceção é se a arquitetura de hardware altamente personalizada for necessária e um algoritmo estiver fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça tempo que poderia ser mais bem gasto desenvolvendo e otimizando outras partes da infraestrutura de negociação. O tempo de desenvolvimento é extremamente precioso, especialmente no contexto de desenvolvedores únicos.
A latência é frequentemente uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão situadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (sistema operacional, latência do sistema de mensagens kernal), sinais de negociação enviados (latência NIC) e pedidos processados ​​(latência interna dos sistemas de intercâmbio).
Para operações de freqüência mais alta, é necessário tornar-se intimamente familiarizado com a otimização do kernal, bem como com a otimização da transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT for desejado, esteja ciente da profundidade do conhecimento necessário!
O cache é muito útil no kit de ferramentas de um desenvolvedor de comércio quantitativo. O armazenamento em cache se refere ao conceito de armazenamento de dados acessados ​​com freqüência de uma maneira que permite acesso de maior desempenho, em detrimento do possível staleness dos dados. Um caso de uso comum ocorre no desenvolvimento da Web ao obter dados de um banco de dados relacional baseado em disco e colocá-lo na memória. Quaisquer solicitações subsequentes para os dados não precisam "atingir o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.
Para situações de negociação, o armazenamento em cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégias pode ser armazenado em um cache até que seja reequilibrado, de modo que a lista não precise ser regenerada em cada loop do algoritmo de negociação. Essa regeneração provavelmente será uma operação alta de CPU ou E / S de disco.
No entanto, o armazenamento em cache não é isento de seus próprios problemas. A regeneração dos dados em cache de uma só vez, devido à natureza volátil do armazenamento em cache, pode colocar uma demanda significativa na infraestrutura. Outro problema é o empilhamento de cães, em que múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.
Alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de negociação de desempenho mais alto conheçam bem como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos saem do escopo.
A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz os erros e ajuda na legibilidade. No entanto, muitas vezes é sub-ótimo para certas estratégias de negociação de alta frequência. A coleta de lixo personalizada é geralmente desejada para esses casos. Em Java, por exemplo, ajustando o coletor de lixo e a configuração de heap, é possível obter alto desempenho para estratégias de HFT.
O C ++ não fornece um coletor de lixo nativo e, portanto, é necessário manipular toda alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente sujeito a erros (potencialmente levando a ponteiros pendentes), é extremamente útil ter um controle refinado de como os objetos aparecem no heap para determinados aplicativos. Ao escolher um idioma, certifique-se de estudar como o coletor de lixo funciona e se ele pode ser modificado para otimizar um determinado caso de uso.
Muitas operações em sistemas de negociação algorítmica são passíveis de paralelização. Isto refere-se ao conceito de realizar múltiplas operações programáticas ao mesmo tempo, isto é, em "paralelo". Os chamados algoritmos "embarassingly parallel" incluem etapas que podem ser calculadas de forma totalmente independente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarassingly paralelos, pois cada sorteio aleatório e subseqüente operação de caminho podem ser computados sem o conhecimento de outros caminhos.
Outros algoritmos são apenas parcialmente paralelizáveis. Simulações de dinâmica de fluidos são um exemplo, onde o domínio de computação pode ser subdividido, mas, em última instância, esses domínios devem se comunicar entre si e, assim, as operações são parcialmente sequenciais. Os algoritmos paralelizáveis ​​estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados por $ N $ (por exemplo, em um núcleo ou encadeamento da CPU).
A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades de clock do processador estagnaram, pois os processadores mais recentes contêm muitos núcleos com os quais executar cálculos paralelos. O aumento do hardware gráfico do consumidor (predominantemente para videogames) levou ao desenvolvimento de Unidades de Processamento Gráfico (GPUs), que contêm centenas de "núcleos" para operações altamente concorrentes. Essas GPUs agora são muito acessíveis. Estruturas de alto nível, como o CUDA da Nvidia, levaram à adoção generalizada na academia e nas finanças.
Esse hardware GPU geralmente é adequado apenas para o aspecto de pesquisa de finanças quantitativas, enquanto outros hardwares mais especializados (incluindo Field-Programmable Gate Arrays - FPGAs) são usados ​​para (U) HFT. Atualmente, os idiomas mais modernos suportam um grau de simultaneidade / multithreading. Assim, é fácil otimizar um backtester, já que todos os cálculos são geralmente independentes dos demais.
O dimensionamento em engenharia de software e operações refere-se à capacidade do sistema de manipular cargas crescentes consistentemente na forma de solicitações maiores, maior uso do processador e mais alocação de memória. No comércio algorítmico, uma estratégia é capaz de escalonar se puder aceitar maiores quantidades de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação é dimensionada se puder suportar maiores volumes de negócios e maior latência, sem gargalos.
Embora os sistemas devam ser projetados para escalar, muitas vezes é difícil prever antecipadamente onde ocorrerá um gargalo. Registro, testes, criação de perfis e monitoramento rigorosos ajudarão muito a permitir que um sistema seja dimensionado. Os próprios idiomas são geralmente descritos como "não escaláveis". Isso geralmente é resultado de desinformação, e não de fatos concretos. É a pilha total de tecnologia que deve ser verificada para escalabilidade, não para o idioma. É claro que certas linguagens têm um desempenho maior do que outras em casos de uso específicos, mas uma linguagem nunca é "melhor" que outra em todos os sentidos.
Um meio de administrar escala é separar as preocupações, como dito acima. De modo a introduzir ainda a capacidade de lidar com "picos" no sistema (isto é, volatilidade súbita que desencadeia uma série de operações), é útil criar uma "arquitectura de fila de mensagens". Isso significa simplesmente colocar um sistema de fila de mensagens entre os componentes para que os pedidos sejam "empilhados" se um determinado componente não puder processar muitas solicitações.
Em vez de solicitações serem perdidas, elas são simplesmente mantidas em uma pilha até que a mensagem seja manipulada. Isso é particularmente útil para enviar negociações para um mecanismo de execução. Se o motor estiver sofrendo sob latência pesada, ele fará o backup dos negócios. Uma fila entre o gerador de sinais de negociação e a API de execução aliviará essa questão às custas do escorregamento comercial em potencial. Um broker de fila de mensagens de software livre bem respeitado é o RabbitMQ.
Hardware e Sistemas Operacionais.
O hardware que executa sua estratégia pode ter um impacto significativo na lucratividade de seu algoritmo. Este não é um problema restrito a operadores de alta frequência. Uma má escolha em hardware e sistema operacional pode levar a uma falha da máquina ou reinicializar no momento mais inoportuno. Assim, é necessário considerar onde seu aplicativo irá residir. A escolha é geralmente entre uma máquina desktop pessoal, um servidor remoto, um provedor "nuvem" ou um servidor co-localizado em troca.
As máquinas desktop são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis ​​ao usuário, como o Windows 7/8, o Mac OSX e o Ubuntu. Sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente exigirão reinicializações / patches (e geralmente no pior dos casos!). Eles também usam mais recursos computacionais pela necessidade de uma interface gráfica de usuário (GUI).
Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar a problemas de conectividade à Internet e de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser adquirida pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.
Um servidor dedicado ou uma máquina baseada em nuvem, embora frequentemente mais cara do que uma opção de desktop, permite uma infraestrutura de redundância mais significativa, como backups automáticos de dados, a capacidade de garantir mais tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar os recursos de login remoto do sistema operacional.
No Windows, isso geralmente é feito através do protocolo RDP (Remote Desktop Protocol) da GUI. Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infra-estrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente torna as ferramentas de programação baseadas em GUI (como MatLab ou Excel) inutilizáveis.
Um servidor co-localizado, como a frase é usada no mercado de capitais, é simplesmente um servidor dedicado que reside dentro de uma troca a fim de reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta frequência, que dependem de baixa latência para gerar alfa.
O aspecto final da escolha de hardware e a escolha da linguagem de programação é a independência de plataforma. Existe a necessidade de o código ser executado em vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia que está sendo implementada.
Resiliência e Teste.
Uma das melhores maneiras de perder muito dinheiro em negociações algorítmicas é criar um sistema sem resiliência. Isso se refere à durabilidade do sistema quando sujeito a eventos raros, como falências de corretagem, volatilidade excessiva súbita, tempo de inatividade em toda a região para um provedor de servidor em nuvem ou a exclusão acidental de um banco de dados comercial inteiro. Anos de lucros podem ser eliminados em segundos com uma arquitetura mal projetada. É absolutamente essencial considerar problemas como depuração, teste, registro, backups, alta disponibilidade e monitoramento como componentes principais de seu sistema.
É provável que, em qualquer aplicação de negociação quantitativa personalizada razoavelmente complicada, pelo menos 50% do tempo de desenvolvimento seja gasto em depuração, teste e manutenção.
Quase todas as linguagens de programação são enviadas com um depurador associado ou possuem alternativas de terceiros bem respeitadas. Em essência, um depurador permite a execução de um programa com a inserção de pontos de interrupção arbitrários no caminho do código, que interrompem temporariamente a execução para investigar o estado do sistema. O principal benefício da depuração é que é possível investigar o comportamento do código antes de um ponto de falha conhecido.
A depuração é um componente essencial na caixa de ferramentas para analisar erros de programação. No entanto, eles são mais amplamente usados ​​em linguagens compiladas, como C ++ ou Java, já que linguagens interpretadas, como Python, são mais fáceis de depurar devido a menos instruções LOC e menos detalhadas. Apesar dessa tendência, o Python vem com o pdb, que é uma ferramenta sofisticada de depuração. O Microsoft Visual C ++ IDE possui extensos utilitários de depuração de GUI, enquanto para o programador Linux C ++ de linha de comando, existe o depurador gdb.
Testes em desenvolvimento de software referem-se ao processo de aplicar parâmetros e resultados conhecidos a funções, métodos e objetos específicos dentro de uma base de código, para simular comportamento e avaliar múltiplos caminhos de código, ajudando a garantir que um sistema se comporta como deveria. Um paradigma mais recente é conhecido como Test Driven Development (TDD), em que o código de teste é desenvolvido em relação a uma interface especificada sem implementação. Antes da conclusão da base de código real, todos os testes falharão. Como o código é escrito para "preencher os espaços em branco", os testes acabarão por passar, ponto em que o desenvolvimento deve cessar.
O TDD requer um design de especificação inicial extenso, bem como um grau saudável de disciplina, a fim de realizar com sucesso. Em C ++, o Boost fornece uma estrutura de teste de unidade. Em Java, a biblioteca JUnit existe para cumprir o mesmo propósito. O Python também possui o módulo unittest como parte da biblioteca padrão. Muitas outras linguagens possuem frameworks de testes unitários e muitas vezes há várias opções.
Em um ambiente de produção, o registro sofisticado é absolutamente essencial. O registro refere-se ao processo de saída de mensagens, com vários graus de gravidade, em relação ao comportamento de execução de um sistema para um arquivo ou banco de dados simples. Os logs são uma "primeira linha de ataque" ao procurar um comportamento inesperado do tempo de execução do programa. Infelizmente, as deficiências de um sistema de extração de madeira tendem a ser descobertas após o fato! As with backups discussed below, a logging system should be given due consideration BEFORE a system is designed.
Both Microsoft Windows and Linux come with extensive system logging capability and programming languages tend to ship with standard logging libraries that cover most use cases. It is often wise to centralise logging information in order to analyse it at a later date, since it can often lead to ideas about improving performance or error reduction, which will almost certainly have a positive impact on your trading returns.
While logging of a system will provide information about what has transpired in the past, monitoring of an application will provide insight into what is happening right now . All aspects of the system should be considered for monitoring. System level metrics such as disk usage, available memory, network bandwidth and CPU usage provide basic load information.
Trading metrics such as abnormal prices/volume, sudden rapid drawdowns and account exposure for different sectors/markets should also be continuously monitored. Further, a threshold system should be instigated that provides notification when certain metrics are breached, elevating the notification method (email, SMS, automated phone call) depending upon the severity of the metric.
System monitoring is often the domain of the system administrator or operations manager. However, as a sole trading developer, these metrics must be established as part of the larger design. Many solutions for monitoring exist: proprietary, hosted and open source, which allow extensive customisation of metrics for a particular use case.
Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. Existem vantagens e desvantagens para ambas as abordagens. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
A Quantcademy.
Participe do portal de associação da Quantcademy que atende à crescente comunidade de traders de quantificação de varejo e aprenda como aumentar a lucratividade de sua estratégia.
Negociação Algorítmica Bem Sucedida.
Como encontrar novas ideias de estratégia de negociação e avaliá-las objetivamente para o seu portfólio usando um mecanismo de backtesting personalizado no Python.
Comércio Algorítmico Avançado.
Como implementar estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas Bayesianas com R e Python.

Build trading system with python


Obter através da App Store Leia esta publicação em nosso aplicativo!
Building a trading platform with charts - suggestions for a Python GUI Library.
I am building a small program to retrieve data from the market and chart it in real time. While the trading decisions will be largely automated, the charts are updated continuously so that someone can keep track of how the decisions are being taken and manually intervene when necessary.
What would be a good GUI Library for the task (for Python). Here are the considerations -
Programming Language : Python (Do you think I should use something else? May be even do the GUI and backend in different languages. ).
Operating System : Preferably cross-platform, but if it has to be platform specific, then Linux it is.
Speed + Learning Curve : While time (low latency) is not a critical issue and I would prefer something easy to use and fast to learn, the program has to feel responsive and I would not like to trade speed for ease of coding beyond a certain point. I guess this is the part where your experience could help me out.
I had strongly considered WxPython, but some of the comments said it was not well-designed (as in, doesn't fit well with Python!)
So the complexity of the task and meta-considerations have been laid down in front of you. Please help/suggest.
P. S. : While we are at it, if someone could comment on a suitable charting library as well, it would be nice.
For plotting in Python, I'm a big fan of Matplotlib (matplotlib. sourceforge/) which is essentially a more user-friendly wrapper built on top of Pylab (scipy/PyLab). It's really powerful and has a TONS of documentation and examples. It doesn't sound like your charts are very complicated, so you probably won't have to dig too deeply into the package; I think the development gets hairier the deeper into the API you get, but that's probably true of most packages.
I happened to end up using the Tkinter backend, but matplotlib also supports QT, WxPython and others. I'm not a huge fan of Tkinter or WxPython and probably would've used QT instead given the choice, but it's nice that all the options are there. I've used matplotlib on both Linux and Mac OS X with a lot of success.
As a side note, here's an interesting related SO post on plotting in WxPython if you decide to go that route: What is the best real time plotting widget for wxPython?

No comments:

Post a Comment